Detecting LTR structures in human genomic sequences using profile hidden Markov models
نویسندگان
چکیده
More than 45% of human genome has been annotated as transposable elements (TEs). The human genome is expanded by the mobilization of these TEs, which they may increase the plasticity and variation of the genome. Long terminal repeat (LTR) retrotransposons are important components in TEs. LTRs include regulatory sites, which the authors believe could be conserved in evolution. Therefore, these significant motifs in the sequence of LTRs are found and are used to train a Hidden Markov Model. These models are used as fingerprints to detect most of the known LTRs detected by RepeatMasker. LTR instances are classified into families using the predictive models proposed. These LTRs can support evolutionary analysis. A new method of detecting LTR is proposed. Analyzing LTR sequences reveals some specific motifs as LTR fingerprints, which can be built into HMM profiles. Experimental results reveal that the proposed experimental approach not only discovers most of the LTRs found by RepeatMasker, but also detects some novel LTRs. Moreover, the novel LTRs may be structurally incomplete or degenerate. 2008 Published by Elsevier Ltd.
منابع مشابه
A generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences
The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...
متن کاملMGEScan-non-LTR: computational identification and classification of autonomous non-LTR retrotransposons in eukaryotic genomes
Computational methods for genome-wide identification of mobile genetic elements (MGEs) have become increasingly necessary for both genome annotation and evolutionary studies. Non-long terminal repeat (non-LTR) retrotransposons are a class of MGEs that have been found in most eukaryotic genomes, sometimes in extremely high numbers. In this article, we present a computational tool, MGEScan-non-LT...
متن کاملDetecting Metamorphic Viruses Using Profile Hidden Markov Models
Detecting Metamorphic Viruses using Profile Hidden Markov Models By Srilatha Attaluri Metamorphic computer viruses “mutate” by changing their structure every time they propagate. Unlike other viruses, they use code obfuscation techniques on the body of the virus and do not exhibit a common signature. With the advent of construction kits, it is easy to generate various metamorphic strains of a v...
متن کاملComparing the Bidirectional Baum-Welch Algorithm and the Baum-Welch Algorithm on Regular Lattice
A profile hidden Markov model (PHMM) is widely used in assigning protein sequences to protein families. In this model, the hidden states only depend on the previous hidden state and observations are independent given hidden states. In other words, in the PHMM, only the information of the left side of a hidden state is considered. However, it makes sense that considering the information of the b...
متن کاملDetecting distant homologs using phylogenetic tree-based HMMs.
It is often desired to identify further homologs of a family of biological sequences from the ever-growing sequence databases. Profile hidden Markov models excel at capturing the common statistical features of a group of biological sequences. With these common features, we can search the biological database and find new homologous sequences. Most general profile hidden Markov model methods, how...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 36 شماره
صفحات -
تاریخ انتشار 2009